Roll No.

C033534(033)

B. Tech. (Fifth Semester) Examination, Nov.-Dec. 2021

AICTE (New Scheme)

(IT Engg. Branch)

SIGNAL PROCESSING

(BT3033)

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Part (a) of each question is compulsory and it carries 4 marks. Attempt any two part from (b), (c) and (d) of each question.

Unit-I

1. (a) Define convolution.

- Δ
- (b) Find the convolution of two finite duration sequences 8

$$x(n) = \begin{cases} 1, & -1 \le n \le +1 \\ 0, & \text{otherwise} \end{cases}$$

and $h(n) = \begin{cases} 1, & -1 \le n \le +1 \\ 0, & \text{otherwise} \end{cases}$

(c) Given two sequences,

 $x_1(n) = 3\delta(n) + 2\delta(n-1)$

$$x_2(n) = 2\delta(n) - \delta(n-1)$$

Find the z-transform of their convolution:

$$X(z) = Z(x_1(n) \times x_2(n))$$

(d) Suppose that an analog signal is given as

$$x(t) = 5\cos(2 \times 1000t), \text{ for } t \ge 0$$

and is sampled at the rate of 8,000 Hz.

- (i) Sketch the spectrum for the original signal
- (ii) Sketch the spectrum of the sampled signal from 0 to 20 kHz.

Unit-II

- 2. (a) Write properties of FFT?
 - (b) Explain the relation between DTFT and DFT? 8

4

8

8

- (c) Given x(n) = 1, 2, 3, 4, 4, 3, 2, 1, find X(k) using
- DIT FFT algorithm. It beams will should be the second of t
- (d) Compute (i) linear and (ii) Circular convolution of the two sequences

$$x_1(n) = (1, 1, 2, 2)$$
 and $x_2(n) = (1, 2, 3, 4)$

Unit-III

- 3. (a) Difference between Direct Form-I and Direct Form-II method for realizing a digital filter?
 - (b) Determine the parallel realization of IIR digital filter with following transfer function.

$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z+1)(z+2)}$$

(c) Convert the analog filter into a digital filter whose system function is

$$H(s) = \frac{s+0\cdot 2}{\left(s+0\cdot 2\right)^2+9}$$

8

[5]

Use the impulse invariant technique. Assume T=1s

(d) Design a second-order digital lowpass Butterworth filter with a cutoff frequency of 1.5 kHz and a passband ripple of 3 dB at a sampling frequency of 8,000 Hz. Determine the transfer function and difference equation.

Passband cut-off frequency, fp

Stopband cut-off frequency, fs = 250 Hz

Passband ripple, Ap = 0.1 dB

Stopband attenuation, As = 40 dB and

Sampling frequency, F = 1000 Hz.

Unit-IV

4. (a) Define Hamming window function.

4

(b) Given the following FIR filter:

8

8

8

$$y(n) = 0.1 x(n) + 0.25x(n-1) + 0.2 x(n-2)$$

Determine the transfer function, filter length, nonzero coefficients and impulse response.

(c) Obtain FIR linear phase and cascade realization of system function.

 $H(z) = \left[1 + \frac{1}{2}z^{-1} + z^{-2}\right] \left[1 + \frac{1}{4}z^{-1} + z^{-2}\right]$

(d) Design a low-pass digital FIR filter using Kaiser windows satisfying the specifications given below.

Unit-V

5. (a) What is Decimation and Interpolation?

4

150 Hz

(b) Obtain the expression for the output y(n) in terms of x(n) for the multirate system given as follows: 8

x(n) \uparrow 5 \downarrow 20 \uparrow 4 \downarrow y(n)

(c) We are given a multi sampling rate system shown in fig. determine y(n) as a function as y(m)

8

(d) Write short notes on speech processing and image processing.

- 8

V-Will

No.

swithing the affiliate of applicable are a

2 1 e

to arrival metape and adoption when a residence of the